高エネルギーX線を用いた平板型半導体検出器の きず検出基本性能確認

田北 雅彦^{*1} 中村 敬治^{*2} 佐藤 雅保^{*3} 細谷 昌厚^{*4} Takita Masahiro Nakamura Keiji Sato Masayoshi Hosoya Masaatsu

放射線透過試験(RT)においては、イメージングプレート(IP)を用いたコンピューティドラジオグラフィ (CR)技術や平板型半導体検出器(フラットパネルディテクタ:FPD)を用いたデジタルラジオグラフィ(DR) 技術の進歩が著しい。CR については国内外において既に多くの研究成果が報告⁽¹⁾⁽²⁾され、その性能はほぼ 把握されている一方、FPDを用いた DR については海外での研究報告⁽²⁾⁻⁽⁴⁾はあるものの、国内ではほとんど 見当たらない。特に高エネルギーX線を用いた研究報告はない。そこで、本報告では代表的な FPD について、 きず検出基本性能をフィルム、IP と比較して把握し、FPD 適用の可能性を示した。

キーワード:放射線透過試験(RT)、コンピューティドラジオグラフィ(CR)、デジタルラジオグラフィ(DR)、 イメージングプレート(IP)、平板型半導体検出器(フラットパネルディテクタ:FPD)

1. はじめに

放射線透過試験では従来からフィルムが最もよ く使われている。しかしながら、最近では試験コ ストの低減や環境に対する負荷低減、記録の保管 管理等の観点から CR 技術や DR 技術がフィルム に代わるものとして注目されている⁽¹⁾。

当社ではフィルムと同様に変形が可能であり、 同等の撮影配置が可能であることから、CR シス テムを既に導入し、実際の試験に適用している。 しかし、CR システムに使われている IP は比較的 低エネルギー領域にきず検出感度のピークがある ため、高エネルギーX線に対して著しい像質の低 下が起こり、プラント等の厚肉鋼材への適用には 不向きである。

そこで、現状の検出器の中で高エネルギー X 線 に対して良好な像質を得られる可能性がある検出 器として、FPD を用いた DR システムを検討する こととした。その第一ステップとして本稿では、 高エネルギー X 線を用いて FPD のきず検出基本 性能について試験を行い、フィルムおよび IP と比 較を行ったので報告する。

2. FPD システムの概要

FPD システムは、図1に示すようにパソコン、 高精細モニタ、FPD 本体から構成されている。パ ソコン上で取り込み条件を設定後、X線を照射す ることにより、モニタ上に撮影画像が表示され、

*4:技師長

— 31 —

^{*1:}検査事業部 横浜検査部 課長

^{*2:}検査事業部 事業部長補佐

^{*3:}検査事業部 横浜検査部 部長

必要な処理を行った後、保管される。

本システムはフィルムとは異なり、現像処理を 行う必要がない。また、IPとも異なり、レーザ光 を用いてデータの読み取りや消去を行う必要もな い。ただし、フレキシブルではないのでフィルム と同等の撮影配置は難しいが、配管等のパノラマ 撮影以外では品物の後ろに FPDを配置できれば、 フィルムと変わりない撮影配置が実現できる。ま た、機種によってはリアルタイム撮影(動画)に 対応できるなど応用範囲は広い。本研究ではシン チレータが GOS タイプの二種類の FPD を用いて、 きず検出基本性能の確認を実施した。

図1 FPD システムの基本構成

3. 試験方法

撮影対象はタングステン球を溶接部に挿入した SM490A 突合せ溶接試験片で溶接後、機械加工を行った、板厚 38mmの平板である⁽⁵⁾。300kV、1MeV、9MeVの各エネルギーでフィルム、IP および FPD で撮影をした。フィルムは富士フィルム製 #50、IP は同じく富士フィルム製 ST- VIを用いた。FPD には海外のA 社製品および B 社製品を対象とした。放射線源にはそれぞれ SMART300、ML-1R II、LINATORON M9を用いた。FFD は 300keVの場合、1,000mm、1MeV の場合、1,500mm、9MeVの場合、2,000mmとした。照射時間および FPD の積分処理条件(露出時間、取り込み画像フレーム数)はそれぞれ、最適な画像が得られるように設

定した。その他の試験条件は ISO17636-2:2013 を 参考として設定した。なお、フィルムおよび IP の 画像のデジタイザースキャンピッチは 50µm とし た。

撮影配置は 300kV と 1MeV については図2のと おりで溶接試験片のみの材厚を撮影対象とした。 また、9MeV では溶接試験片に 38mm の SM490A 鋼板を加え 76mm の材厚として図3のとおり撮影 した。

(注記)鉛シールドはFPDの電子回路部(受光部の周辺)をX線照射から保護するために設置

図 2 300kV および 1MeV の撮影配置

注記)鉛シールドはFPDの電子回路部(受光部の周辺)をX線照射から保護するために設置 図3 9MeVの撮影配置

金属スクリーンには Pb、Cu、Fe の薄板を用い、 それぞれ単体あるいは2種類の材質の組み合わせ を用いた。また、IP だけでなく全ての撮影媒体に 適用して同じ条件で試験を実施した。

透過度計および像質計の配置は図4のとおり配 置して撮影をした。撮影時におけるX線源側から 見た試験片および FPD の状況を図6に示す。

図4 透過度計/像質計配置

And the second se		
Element No.	Corresponding	Wire Ø
(D=Duplex)	unsnarpness	and spacing, mm
13D	0,10	0,050
12D	0,13	0,063
11D	0,16	0,080
10D	0,20	0,100
9D	0,26	0,130
8D	0,32	0,160
7D	0,40	0,200
6D	0,50	0.250
5D	0.64	0.320
4D	0.80	0.400
3D	1.00	0.500
2D	1.26	0.630
1D	1.60	0.800

図 5 Duplex Wire(複線形像質計) (EN462-5:1996)

図6 FPD の高エネルギー X 線撮影の状況

撮影して得られた画像から**図5**の Duplex Wire によるラインプロファイルを取り、最も小さい線 対を選び空間分解能を**図7**のとおり評価した。空 間分解能(Spatial Resolution)は**図7**の式から計 算される値で線対の分解能の程度を示している。 なお、画像処理および分解能の評価にはドイツ 連邦材料試験研究所(Federal Institute for Materials Research and Testing, BAM)の画像処理ソフトウェ ア「ISee! ver.1.10.2」⁽⁶⁾を使用した。

$$Resolution = (1 - [\frac{C - \frac{(E+D)}{2}}{\frac{(B-E) + (A-D)}{2}}]) * 100$$

(ラインプロファイル例)

図7 Duplex Wire を用いた空間分解能評価

— 33 —

4. 結果および考察

4.1 9MeV の放射線透過撮影画像

図8、図9、図10は9MeVの高エネルギーX 線により撮影したフィルム、IP、FPDの放射線透 過撮影画像である。従来のフィルム撮影の画像 と違い、FPDは撮像過程で積分処理があるため、 独特のコントラストが得られている。フィルム と FPDの画像は Duplex Wire、JIS線形透過度計、 ASTM 有孔形透過度計の像が比較的鮮明に写って いるが、IP では全体的に散乱線の影響なのか、ム ラがあり、かつ鮮明さに欠ける。

因みにフィルムと IP の画像で中心部に薄く丸い 像が現れているのは X 線の強度を平坦化するため に X 線装置に内蔵されているイコライザー(凸レ ンズ状の金属版)の影響である。

図8 9MeV フィルム画像

図 9 9MeV IP 画像

4.2 Duplex Wire を用いた空間分解能計測結果

図 11、図 12、図 13 に X 線エネルギー 300keV、 1MeV、9MeV それぞれについてフィルム、FPD、 IP の空間分解能(Spatial Resolution)を比較して 示している。

図 11、図 12 において測定点のバラツキは多い ものの、空間分解能の傾向はフィルム、IP、A 社 FPD、B 社 FPD の順に良い結果となった。

図 10 9MeV FPD 画像

図 11 フィルム、FPD、IP の空間分解能 (X 線エネルギー: 300keV)

一方、9MeV の場合、A 社 FPD のデータはほぼ フィルムと同等の傾向を示した。また、9MeV に おける IP では直線の傾きからも明らかなように最 小線対の空間分解能は劣っていることが明らかと なった。FPD の特徴として、積分処理して1枚の 画像として表すため、フィルムや IP と比較してコ ントラストの良い像質が得られると考えられる。

(X線エネルギー:9MeV)

また、フィルムはデジタル画像に変換したデー タを評価に採用しているため、スキャン過程で少 なからず像質劣化が含まれている。

4.3 基本空間分解能と X 線エネルギーの関係

基本空間分解能(Basic Spatial Resolution: SRb) とは Duplex Wire で最初に空間分解能が 20%未満 となる線対の線間距離のことをいう。

図7において空間分解能の評価方法を示したが、 これは最小線間の谷が全体の20%以上ある場合に 2本の線対は分離(認識)されているとして識別 の程度を示すもので、EN14784-1等の規格に定義 されている。図14は、SRbの平均値に及ぼすX 線エネルギーの影響を示したグラフである。

図 14 SRb の平均値と X 線エネルギーの関係

300keVと1MeVではSRbはフィルム、IP、A 社FPD、B社FPDの順に優れているが、9MeVで はフィルムとA社製FPDおよびB社製FPDがほ ぼ同じSRbであるのに対して、IPについてはSRb が大きくなり分解能が明らかに低下していること がわかる。IPに注目すると1MeV付近で他の検 出器とクロスしていることからこの付近のエネル

— 35 —

ギーを超えた IP の使用は、高い分解能が要求され る試験では適用できないと言える。

4.4 JIS 線形透過度計を用いた識別最小線径の計 測結果

材厚 78mm の鋼材に 9MeV の X 線を照射した 場合に使用する線形透過度計は JIS Z3104 による と図 15 に示すように 16F が適用され、A 級(旧、 普通級)では 1.0mm ワイヤ(太い方から 3 本目)、 B 級(旧、特級)では 0.8mm ワイヤ(太い方から 4 本目)が識別されなければならない。

本試験の結果ではフィルムと FPD で 0.8mm を 識別できたが、IP では 1.25mm (2 本目)が識別最 小線径となった。従って、FPD は線形透過度計の 識別度を A 級、B 級ともに満足したが、IP では A 級でも満足しないことがわかった。別の試験で高 精細タイプ IP (GESIT-IPU)を使用して同様の撮 影を実施したが、照射時間が9倍近く掛った上に 辛うじて 3 本目ワイヤが見えたという結果を得て いる。また、その画像はムラが多く実際の検査に 耐え得る品質でないことに加え、高感度による時 間短縮等のメリットがないという結果を得ている。

4.5 金属スクリーンの効果

ISO17636-2 2013 では IP の散乱線防止による像 質の改善を目的に金属スクリーンの適用が要求さ れている。IP だけでなくその他の検出器にも散乱 線は同様に影響していると考えられるので確認の ため金属スクリーンを適用して試験を行った。こ こでは IP の分解能低下が認められている 9MeV のデータのみを示すことにする。

図 16 では、金属スクリーンの厚さが 2mm 付 近で空間分解能の向上が認められた。9MeV の X線エネルギーの撮影において 2mm という値は ISO17636-2 の要求である 0.6mm ~ 4.0mm の金属 スクリーン (Fe、Cu、Pb)の範囲にあり、散乱線 防止効果が表れている可能性がある。ただし、図 9 を始めとして IP を用いた撮影画像が著しく改善 するものではなかった。

5. CR および DR 関連規格の現状⁽⁷⁾

CR あるいは DR 技術が国内において広く産業 界に受け入れられるには装置の能力向上や技術の 向上と共に国内規格の整備が必要であることは言 うまでもない。本稿の最後に規格の国内外の整備 状況について簡単に触れる。

海外においては EN、ISO、ASTM において表1 のように規格が整備されており、実際の試験に支 障がないようになっている。

一方、国内においては日本非破壊検査協会の放 射線部門および日本溶接協会の非破壊試験技術実 用化研究委員会(AN 委員会)が鋭意、JIS 化に向 けた検討を進めているが、現時点では残念なこと にJIS として発行されていない。国内技術を停滞 させないためにも一日も早い JIS 制定が望まれる。

(X線エネルギー:9MeV)

表1 海外における CR および DR 関係規格

No	規格 No.	規格タイトル	
1	EN 14784-1	Non-destructive testing-Industrial Computed radiography	
	(2005)	with storage phosphor imaging plates	
		Part 1:Classification of systems	
2	EN 14784-2	Non-destructive testing-Industrial Computed radiography	
	(2005)	with storage phosphor images plate	
		Part 2:General Principle for testing of metallic materials	
		using X-rays and gamma rays	
3	EN 465-5	Non-destructive testing-Image quality of radiographs	
	(1996)	Part 5:Image quality indicators(duplex wire type),	
		determination of image unsharpness value	
4	ISO 16371-1	Non-destructive testing-Industrial Computed radiography	
	(2011)	with storage phosphor imaging plates	
		Part 1:Classification of systems	
5	ISO/NP 16371-2	Non-destructive testing-Industrial Computed radiography	
		with storage phosphor images plate	
		Part 2:General Principle for testing of metallic materials	
		using X-rays and gamma rays	
6	ISO/DIS 19232-5	Non-destructive testing-Image quality of radiographs	
		Part 5:Image quality indicators(duplex wire type),	
		determination of image unsharpness value	
7	ISO/17636-2	Non-destructive testing of welds-Radiographic testing	
	(2013)	Part 2:X- and gamma-ray technique with digital detectors	
8	ASTM E2446-05	Standard Practice for Classification of Computed	
		Radiography Systems	
9	ASTM E2007-08	Standard Guide for Computed Radiography(PSL Method)	
10	ASTM E2033-99	Standard Practice for Computed Radiography(PSL Method)	
11	ASTM E2445-05	Standard Practice for Qualification of Computed Radiography	
		Systems	
12	ASTM E2002-98	Standard Practice for Determining Total Image Unsharpness	
13	ASTM E1647-03	Standard Practice for Determining Contrast Sensitivity in	
		Radiology	
14	ASTM E2736-10	Standard Guide for Digital Detector Array Radiology	

6. まとめ

高エネルギーX線源を用いたFPDの基本性能 についてフィルム、IPと比較検討をした。

現状の放射線透過試験の検出媒体として分解 能の観点でフィルムに勝るものはない。実際に 300kV および 1MeV ではフィルムの方が FPD より 基本分解能は勝っているが、9MeV ではほぼ同等 となり、高エネルギーX線領域において FPD の 実用性の可能性が明らかとなった。今後、実際の 各種部品への適用を通して、その能力や特徴を多 方面から明らかにしていく予定である。

医療分野とは異なり、工業分野ではより優れた 耐久性や耐環境性、可搬性が求められるが、未だ、 十分には実証されていないと思われる。また、高 エネルギーX線照射になればなるほど、FPD撮像 部周辺の電子機器を鉛等で遮蔽する必要があるこ とも可搬性の観点で課題である。因みに本研究で は9MeVの照射では厚さ50mmの鉛で遮蔽した。 さらに、現像処理やデータの読み取り・消去の手 間がないとはいえ、フィルムやIPに比べて、装 置が現状、かなり高価である点も課題といえる。 今後、更なる低コスト型 FPD の出現が望まれる。 いくつかの課題はあるものの、適用分野を限定す ることによって放射線透過試験の大幅なコストダ ウンや省力化が図れることは大きな魅力であるの で、当社としても積極的に FPD の適用検討を推進 していく予定である。

参考文献

- 成川:最新のコンピューテッド・ラジオグラ フィ、非破壊検査、61(4)、pp.141-147、(2012)
- (2) K.LaCivita: Use of Digital Radiography for Final Part Acceptance of Aerospace Castings, Materials Evaluations, 70 (8), pp.915-922
- (3) U.Ewert etl: Image Quality in Digital Industrial Radiography, Materials Evaluations, 70 (8) , pp.955-964, (2012)
- (4) K.Bavendiek etl: Best Energy Selection for Different Applications with Digital Detector Array from 20 to 600 keV, Materials Evaluations, 70 (8), pp.965-974, (2012)
- (5) 特許第 5126915 号:非破壊試験用溶接試験片の製作方法
- (6) http://www.bam.de/en/kompetenzen/fachabteilungen/ abteilung_8/fg83/fg83_ag5.htm
- (7)加藤他:デジタルラジオグラフィ関連規格の
 現状について、非破壊検査、62(4)、pp.152-156、(2013)

検査事業部 横浜検査部 課長 田北 雅彦

検査事業部

TEL. 045-759-2280 FAX. 045-759-2146

横浜検査部 部長 佐藤 雅保 TEL. 045-759-2280 FAX. 045-759-2146 検査事業部 事業部長補佐 中村 敬治 TEL. 045-759-2280 FAX. 045-759-2146

技師長

細谷 昌厚 TEL. 045-791-3550 FAX. 045-791-3555