ポリイミド被覆 FBG センサの高温適用

福本伸太郎^{*1} 西土 隆幸^{*2} 吉川 和夫^{*3} Fukumoto Shintaro Nishido Takayuki Yoshikawa Kazuo

ポリイミド被覆素線シングルモード光ファイバ(SMF)の FBG センサを用いて、400℃までの耐熱性評価を実施した。従来技術の問題点を踏まえ、光ファイバに限りなく近い径の管に、FBG センサを挿入し、FBG 部の片側のみを固定することで温度計測を行った。その結果、300℃以下において、FBG センサによる温度測定が可能なことを確認した。

キーワード:FBG センサ、温度計測、光ファイバセンサ、高温

1. はじめに

近年、光ファイバセンサの1つであるFBG センサが、土木建築分野から航空宇宙分野まで幅広 く利用されている。本稿では、FBG センサの高 温領域における温度計測の可能性に着目した。中 でも、ポリイミド被覆素線シングルモード光ファ イバ (SMF) に着目した。

当社ではポリイミド被覆素線 SMF を利用して いる。一般の通信用光ファイバ素線の被覆材はア クリルであり、使用温度範囲の上限は 80℃であ る。また、ポリイミド被覆素線の使用温度範囲の 上限は 300℃である⁽¹⁾。しかし当社では、ポリイ ミド被覆素線 SMF の耐熱性についてのデータを 取得していないため、高温環境における FBG セ ンサ適用の障害となっている。

本試験では、このような背景に基づき、400℃ までのポリイミド被覆素線 SMF の耐熱性評価を 行った。なお、本試験で使用した FBG センサは、 市販されているものよりも簡便に作製でき、セン サ径も小さいものである。

2. FBG センサの特長

まず、FBG センサの原理について説明する。 図1にFBG センサの構造図を示す。FBG とはファ イバ・ブラッグ・グレーティング(Fiber Bragg Grating)の略称であり、本センサは電気抵抗式ひ ずみゲージと比較し、電気的影響を受けない、防 爆性を有する、ひずみ感度が高い、1本の光ファ イバで複数点の計測ができる、といった特長を持 つ。FBG センサは、光ファイバのコア内にブラッ グ格子と呼ばれる回折格子を形成し、特定の波長 のみを反射する機能を持たせた光ファイバ型デバ イスである。FBG によって反射した波長 λ_g は式 (1) で表せる。

$$\mathcal{A}_{B} = 2n_{e}\Lambda \tag{1}$$

ここで、 n_e は光ファイバの屈折率、 Λ は回折格 子の周期である。式(1)を満たす波長で強い反 射が生じ、それ以外の波長は透過する。この反射 した波長はブラッグ波長と呼ばれる。

*1:研究開発センター 研究開発グループ

*3:計測事業部 材料試験部

^{*2:}研究開発センター センター長 工学博士 技術士(建設部門) P.E. (Civil Eng.) 名古屋大学大学院非常勤講師 芝浦工業大学大学院非常勤講師

図2にASE 光源(増幅自然光源)およびFBG 透過光のスペクトルを、図3にFBG 反射光スペク トルを示す。図2、図3より、透過光は1550 nm 以外の波長スペクトルを、反射光は1550 nm のみ の波長スペクトルを得ていることがわかる。

ブラッグ波長 λ_{B} は、ひずみ、および温度に応答 して変化する。図4および図5に、FBG センサの ひずみと温度をそれぞれ独立に変化させたときの ブラッグ波長変化を示す。それぞれ直線性を示し ており、ひずみ、および温度の計測が可能となる。 図4から求めたひずみ感度は1.24×10⁻³ nm/με、 図5から求めた温度感度は約10×10⁻³ nm/℃であ る。各図における直線の傾きが感度を表す。これ らの値は文献⁽²⁾で示されているものと同等の結果 である。

- 49 -

3. 従来技術の問題点

3.1 市販されている光式温度センサ

現在、市販されている光式温度センサ(os4210、 MICRON OPTICS 社)は、FBG 部のハウジング材 を含め、小型なものでも ϕ 1.07 mm である。これ では光ファイバの径が小さい(SMF 外径 0.15 mm)という利点を活かしきれていない。

3.2 光学温度センサ⁽³⁾

この発明は、温度の変化を伸び縮みの変化に変 換する感温部材に、張力をかけた状態で FBG セ ンサを接着し、測定をするというものである。し かし、FBG センサを感温部材に固定しなければ ひずみの計測ができないため、感温部材が必要で あり、測定する箇所が限定されてしまう。また、 センサ自体の寸法も大きくなってしまう。

FBG センサ温度計測装置と FBG センサ組み 込み発電機⁽⁴⁾

この発明は、FBG センサに張力がかからない ようにして被測定物に貼り付けた状態で温度を測 定するものであるが、張力がかからないように貼 り付けする手法が具体的に明記されていない。

4. 試験内容

前述した従来のFBG センサによる温度測定技 術の問題点を解決するために、独自の方法による 試験を実施し、測定精度を確認した。

4.1 試験概要

SUS 細管内に FBG センサを挿入した温度セン サ(FBG 温度センサ)、および熱電対を SUS プレー トに貼り付け、400℃までの温度計測を実施した。 FBG 温度センサにより、各温度のブラッグ波長、 および反射率の変化を計測した。ここで反射率と は、入射光と反射光の光強度比である。

4.2 FBG 温度センサ

図6に、本試験で作製した FBG 温度センサを 示す。図6のように、光ファイバに限りなく近 い径の管に FBG センサを挿入した。FBG 部の片 側のみを固定し、もう一方の軸方向・径方向を自 由境界とした。この方法により、FBG 部と管と の間に摩擦の影響がない状態で測定することがで き、管および被測定物のひずみ変化を無視し、温 度に限定した測定ができる。

図6 FBG 温度センサの構造

4.3 温度計測試験方法

図7に試験方法を、図8に試験装置の設置状況を、
そして図9に試験片の設置状況を示す。SUS プレート(長さ50 mm、幅50 mm、厚さ4 mm)にFBG
温度センサ、および熱電対をスポット溶接した。

図7 試験方法

図8 試験装置の設置状況

5.1 温度ステップ

試験片に溶接した熱電対の温度ステップを図 10に示す。なお、試験開始温度は20.3℃であった。

5.2 試験片の外観目視とポリイミド被覆の劣化 状況

図 11 に、自然冷却後の試験片の外観を示す。 図 11 より、外観は特に変化は見られなかったが、 SUS 管内の FBG センサを取り出してみたところ、 FBG 部付近のポリイミドは黒くなっていた。これ はポリイミドが高温により劣化したと考えられる。

図9 試験片の設置状況

図 11 自然冷却後の試験片

5.3 ブラッグ波長変化

図 12 に、試験開始から終了までにおける、時間に対するブラッグ波長変化を示す。図 12 より、 FBG センサでは温度上昇とともにブラッグ波長 も変化しているが、温度を保持したときには、波 長の変化はなかった。

5.4 温度変化における可逆性

図 13 に、温度変化とブラッグ波長変化の関係 を示す。図 13 より、FBG 温度センサは、室温から 400℃まで温度を上げたときの波長変化(Heating) と、室温に戻したときの波長変化(Natural Cooling) に可逆性が見られた。また、FBG 温度センサは一 般的な FBG センサの温度感度(約 10 × 10⁻³ nm/C)

図 13 温度変化と FBG 温度センサのブラッグ波 長の変化

と近い感度を得た(加熱時 13.0×10⁻³ nm/℃、自 然冷却時 12.8×10⁻³ nm/℃)。

5.5 反射率の変化

図 14 に、経過時間における FBG 温度センサの 反射率の変化を示す。反射率は左縦軸であり、ブ ラッグ波長は右縦軸である。図 14 より、FBG 温 度センサは温度上昇に伴い反射率が低下してい る。300℃より高温において、反射率は 0.5 以下 となった。また、自然冷却時は反射率の低下があ まりなかったが、試験開始前の反射率には戻らな かった。

反射率(入射光と反射光の光強度比)の低下に よって、ブラッグ波長の光強度が低下する。一般 的に、この現象は長距離の配線、接続コネクタの 使用、ケーブルやセンサの曲げなどによって起き る。多少の反射率の低下は測定精度に影響はしな い。しかし、大幅な反射率の低下によって、ブラッ グ波長とノイズとの光強度の差が小さくなり、測 定自体が不能となってしまう。本試験のように研 究室レベルの簡潔な試験状況では、反射率が0.5 以下となっても温度測定ができていたが、現場を 想定すると、反射率が0.5 以上あることが望まし いと考える。

図 14 経過時間における FBG 温度センサの反射 率の変化

6. まとめ

本試験の結果を以下にまとめた。

- SUS 管内に挿入した FBG センサは、400℃ま での温度上昇とともにブラッグ波長も変化 するが、温度を保持したときは、波長の変化 はなかった。なお、自然冷却に伴い、ブラッ グ波長は初期値まで戻った。
- ②FBG 温度センサは一般的な FBG センサの温 度感度と近い値を得た。
- ③FBG 温度センサは温度上昇に伴い反射率が 低下した。300℃より高温において、反射率 は0.5以下となった。

本試験では、反射率が0.5以下となった400℃ においても温度測定ができていることが確認でき たが、反射率の不可逆性、および試験後のポリイ ミド被覆の劣化状況から、300℃より高温の計測 が困難であると考えた。よって、SUS 細管内に FBG センサを挿入した FBG 温度センサは、300℃ 以下の温度測定が可能であるとした。

参考文献

- (1)株式会社ロゴスホームページ:http://www. logosgp.com/fbg_sensor.html
- (2) Othonos A. and Kalli K. : Fiber Bragg Grating, Artech House Publishers, pp.98-99, 1999
- (3) 出雲正樹:特開 2003-254838、光学温度セン サー、特許庁
- (4)池田悠紀:特開 2014-206422、FBG センサを 用いた温度計測方法及びその装置並びに FBG センサを組込んだ発電機、特許庁

研究開発センター 研究開発グループ 福本伸太郎 TEL. 045-791-3522 FAX. 045-791-3547

吉川 和夫

研究開発センター センター長 端定(建設部門) (古·UI Eng.) 屋大学大学院非常勤講師 工業大学大学院非常勤講師 博士 无 ┼ 隆幸 TEL. 045-791-3522 FAX. 045-791-3547