CFRP 製タンクの水中伝播波による損傷位置標定

福本伸太郎 *1	西土	隆幸 ^{*2}	荒川	敬弘*3	
Fukumoto Shintaro	Nishido Takayuki		Arakawa Takahiro		
	大森	真実 *4	大森	征一 *4	
	Oomori Mami		Oomori Seichi		

炭素繊維強化プラスチック(CFRP)で製造された CFRP 製タンクを用いて、水耐圧試験を実施した。あ らかじめタンク上部に損傷を付与しておき、損傷の進展や新たに発生した損傷箇所を、アコースティック・ エミッション(AE)法により特定した。損傷位置の標定には、タンク内部の水中を伝播する波を用いた。 計測した AE(水中伝播波)による3次元位置標定を実施した結果、損傷箇所や破壊起点の位置標定ができ ていることを確認した。

キーワード:アコースティック・エミッション (AE)、3次元位置標定、炭素繊維強化プラスチック (CFRP)

1. はじめに

宇宙製品への炭素繊維強化プラスチック(CFRP) 材の応用は、多くの例がある。宇宙製品の中には、 気蓄器と呼ばれる、衛星推進系の燃料タンクから 燃料を排出するためにガスを蓄えておく高圧のタ ンクがある。

この製造および輸送過程において、タンクに損 傷を与える可能性がある。または、それを補修す る場合がある。その際、損傷部や補修後の健全性 を確認する方法として AE 計測が有力である。特 に、CFRP 製のタンクでは、製造後の耐圧試験、 およびその後の非破壊検査によってタンクの健全 性を確認している。耐圧試験における AE 計測は、 試験中のどの段階でどこに損傷が生じたかを特定 できる。このため、耐圧試験時において AE 計測 が適用できる技術を確立しておく必要がある。

なお、この技術は水素自動車の車載用のタンク や貯蔵用のタンクにおいても適用できることが考 えられる。

2. AE 法によるタンクの位置標定

AE 試験は圧力タンクの健全性評価手法として普 及しており、ASME等の規格も制定されている⁽¹⁾⁻⁽³⁾。 AE 試験では、AEパラメータ解析によって AE の 発生位置を知ることが可能であり、「位置標定」 と呼ばれる。このときの AEパラメータとは、試 験対象物に取り付けた複数の AE センサで検知し た AE の発生数(Hit)から、同一事象ごとに分 類し、各センサが検知した AE 波の到達時間差を 示す。一般的に AE による位置標定には、対象物 の表面を伝わる波(表面伝播波)を用いて求めら

*3:フェロー 工学博士

*4:検査事業部 技術部

^{*1:}研究開発センター 研究開発グループ

^{*2:}研究開発センター センター長 工学博士 技術士(建設部門) P. E.(Civil Eng.) 芝浦工業大学大学院非常勤講師

れる⁽⁴⁾⁻⁽⁶⁾。しかしながら、CFRP 材は音響異方性 を有しており、一般的な位置標定方法の適用が難 しい。

過去、CFRP 製薄肉タンクの水耐圧試験におい て、人工的に発信した AE を用いて、AE が水中 を良く伝播することを確認した。その水中を伝播 した波(水中伝播波)を複数の AE センサで検知 することにより、3 次元位置標定の新たな知見を 示した⁽⁷⁾。

本稿においては、この構造に類似した炭素繊維 巻き厚が 6mm の CFRP 製タンクを作製し、水耐 圧試験を実施した。なお、人工的に発信した AE ではなく、昇圧により損傷が進展する際に発生す る AE を用いた。位置標定は、水中伝播波による 3 次元とし、タンクに人工きずを付与した後の耐 圧試験結果を用いた。また、位置標定の精度向上 を目指した。

3. 試験概要

3.1 CFRP 製タンクの仕様

CFRP 製タンクの外観および表面拡大写真を 図1に示す。また、このタンクの仕様を以下に 示す。なお、保証圧とはメーカーがタンクの健全 性を保証する圧力であり、タンクが破断する圧力 ではない。 (2) 寸法:外径 260mm、内径 218±2mm、全長1150mm

(3) ライナ樹脂材料:ポリエチレン樹脂

(4) 口金材質:アルミニウム 6061-T6

(5) 保証E:7~8MPa

(6) 製造条件:T700 相当炭素繊維をフィラメン トワインダ(FW)加工によりヘリカルフープ巻 き仕上げ、樹脂ライナにフルラップ巻き付け加工 し、熱硬化処理をした。製造後、保証圧まで加圧 した。なお、T700とは炭素繊維の商品名であり、 宇宙製品によく使用されている。

3.2 試験装置

試験装置および使用センサを以下に示す。

(1) AE 装置: Vallen 社製 AMSY-6 MB19

(2) AE センサ: AE144A (周波数帯域100~500kHz)

(3) プリアンプ:AEP5 (34dB)

3.3 センサ配置および人工きず

図2に、タンクに取り付けたセンサ配置、お よび人工きずを付与した箇所を示す。本試験では、 12個のセンサを使用した。また、グラインダに よる人工きずは、図2に示した通りであり、形 状や付与時の状況を図3に示す。

(1) 炭素繊維巻き厚:6mm

(a)タンク全体

図 1 薄肉 CFRP 製タンク外観

(b)表面拡大

図2 センサ配置および人工きずを付与した箇所

(a) 断面図

(b)人工きず付与の状況

図3 人工きずの形状

3.4 水耐圧試験

図4に水耐圧試験の工程を示す。Press-test No.1 では、13MPa までの昇圧を2回実施した。その後、 タンクへ人工きずを付与した。Press-test No.2、お よび Press-test No.3 では、13MPa までの昇圧を1回 ずつ実施した。最終的に Press-test No.4 では、タ ンクが破断 (29MPa) するまで昇圧させた。

4. 試験におけるタンクの損傷

4.1 カイザー効果の確認

カイザー効果とは、先行荷重を除荷し、再度負 荷をかけた時に試験対象物が健全であれば先行荷 重に至るまでは、AE がほとんど検出されない現 象のことである。これは、破壊の進行中のような 構造的に不安定な段階では存在しないので、構造 安定性の指標として試験に利用できる⁽⁸⁾。

図5に Press-test No.1 および No.2 における、1 秒ごとの AE Hit 数を示す。なお、緑線は水圧を 示している。横軸に試験時間、縦左軸に Hit 数を、 縦右軸に水圧を示している。図5より、Press-test No.1 では 13MPa の昇圧を 2 回繰り返しており、 2 回目の昇圧過程において、13MPa までに Hit が なく、カイザー効果が成立しているのを確認した。 なお、2 回目の 13MPa 到達以降(360s 以降) に AE Hit が見られるが、圧力が不安定で、13MPa より大きくなったためである。人工きず付与後の Press-test No.2 では 8MPa 以降で Hit が計測されて おり、カイザー効果が不成立であることが確認で きた。これは、13MPa までの昇圧過程において、 新たなき裂が発生し、タンクの損傷が進展したた めであると考えられる。

4.2 損傷箇所の変化

図6に人工きず付与後、および Press-test No.2

(a) 人工きず付与後
(b) Press-test No.2 後
図 6 人工きず付与箇所の損傷による変化

後の損傷箇所の状況を示す。図6より、Press-test No.2後、人工きず箇所の底面にき裂が発生して いたことが確認できた。さらに、人工きず箇所端 部から、タンクの周方向に進展していたことが確 認できた。

5. 水中伝播波による3次元位置標定

5.1 表面伝播波と水中伝播波の分離

精度の良い結果を得るためには、水中を伝播し た AE データのみを用いて、3 次元位置標定をす る必要がある。しかしながら、本試験で計測した AE データは表面伝播波と水中伝播波が混在して いた。計測条件の設定により、水中伝播波のみを 計測することは困難であり、計測対象が変わる度 に設定変更が必要となる。そのため計測後の位置 標定解析において、両者を分離した。

音源と受信センサとの角度を考慮し、ある領域 に対して、解析に用いる受信センサを決めること で分離を試みた。例えば**図7**に示すように、上

— 37 —

図 5 AE Hit 数(1 秒ごと)

図7 音源と受信センサとの角度を考慮した位置標定

部の赤い領域を標定する際には、対向側にある AE センサ(赤丸)を用いる。

5.2 水中伝播波の指向性

解析に用いる受信センサを決めるためには、水 中伝播波の指向性を考慮する必要がある。指向性 とは、音が横に広がらないで目的の方向にすべて の音エネルギーが、1本のビームとなり直進する 度合である。振動子の中心軸方向を0°としたと きの傾き角は、最も大きい音圧となる。この傾き 角が大きくなると次第に音圧は弱くなり、最終的 に0となる。音圧が0になったときの角度を指向 角という。以下の式(1)より、指向角は振動子 の直径に反比例し、波長に比例する。

$$\varphi_0 \approx 70 \frac{\lambda}{D_E} = 70 \frac{C}{D_E f} (^{\circ}) \tag{1}$$

 φ_0 :指向角(°)

- D_E : 振動子の直径 (mm)
- C:波長 (mm)
- λ:波長 (nm)
- f: 周波数 (Hz)

指向角が大きければ指向角は鈍いといい、小さ ければ鋭いという。

発信源を VS150-RIC (振動子直径 ¢20)、受信センサを AE144A (振動子直径 ¢10)として、発信源・ 受信センサの角度と相対エコー高さの関係を理論 値として算出した。なお、¢20の VS150-RIC を発 信源としたのは、¢10の AE144A と比べ振動子径 が大きく、指向性が鋭いため、水中伝播波の指向 性を得やすいからである。図8に理論値と実測値 を示す。図8より、実測値と理論値では90°まで 近似した値となっており、特に60°までは非常に 近い値である。この結果より、本タンクにおいては、 AEの発信源と受信センサとの角度が0~60°にお いて水中伝播波を得られると考えた。

5.3 エリア標定

VisualAE (Vallen 社製) を用いて、位置標定を する領域を決めた。図9(a) より、タンクを横方 向から見たときは、3つの領域とした。また(b) より、タンクを注水側から見たときは、4つの領 域とした。これらの領域をそれぞれ組み合わせ、 計6つの領域(① A-1 and B-1、② A-2 and C-1、③ A-3 and B-1、④ A-1 and B-2、⑤ A-2 and C-2、およ び⑥ A-3 and B-2) とした。図10 に組み合わせた 6つの領域を示す。また、この位置標定法をエリ ア標定と呼ぶことにした。

5.4 水中伝播波による3次元位置標定結果

5.3 節で示した6つの領域は、それぞれ指定した センサによって、位置標定された。例えば、図7 における、タンク上部の赤い領域ならば、図10に おける領域②(A-2 and C-1)に該当し、ch6~12 のセンサによって位置標定されている。

図11および図12に3次元位置標定結果を示す。 図11は、すべての計測データを用い、領域分割 も行っていない結果であり、図12は、エリア標 定による結果である。各図の(a)は、横軸にX

- 39 ---

方向、縦軸にY方向として注排水口側を左側と した平面図である。(b) は横軸にZ方向、縦軸 にY方向として注排水口側から見た平面図であ る。図中の緑点が位置標定された結果であり、こ れらの位置がAEの発信源を示している。

図 11 より、標定結果がタンク上部に集中して いることがわかる。しかしながら、本来 AE が発 生することのないタンク外や水中においても多数 の結果がある。一方、図 12 では、タンク内外の 標定結果がなくなり、タンク上部に集中している ことがわかる。

これらの結果より、水中伝播波による3次元位 置標定において、以下の知見を得た。

(1)水耐圧試験中において、水中を伝播する AE 信号を用いて 3 次元位置標定が可能である。

(2) エリア標定により、表面伝播波と水中伝播波 を良く分離でき、精度の良い標定結果が得られる。

5.5 破断時におけるタンクの破壊過程

図13に Press-test No.4 におけるタンクの破壊

過程を示す。図13より、き裂が損傷箇所端部から、 タンクの周方向に進展していることが確認でき た。Press-test No.4 では破壊したとき、損傷箇所 を中心として、周囲の CFRP が剥がれた。損傷幅 の胴回りの CFRP が膨らみ始め、25MPa では、表 面の CFRP が一部剥離した。最終的には、29MPa 到達時に、その剥離が両側に広がり、破壊したこ とが確認できた。

6. おわりに

炭素繊維巻き厚が 6mm の CFRP 製タンクの水 耐圧試験において、昇圧により損傷が進展する際 に発生し、水中を伝播した AE による 3 次元位置 標定を実施した。その結果、水中を伝播する AE 信号のみを使用する 3 次元位置標定(エリア標定) を行うと、精度が良くなると言う知見を得た。本 稿は定性的な評価にとどまっているが、今後 CFRP 材の破壊機構を把握し、位置標定が適用で きる損傷の大きさを検討していきたい。

図 13 Press-test No.4 におけるタンクの破壊過程

参考文献

- ASME Boiler and Pressure Vessel Code, Section V, Article 12, "Acoustic Emission Examination of Metallic Vessels during Pressure testing", American Society for Mechanical Engineers, Latest edition
- (2) ASME Boiler and Pressure Vessel Code, Section V, Article 11, "Acoustic Emission Examination of Fiber Reinforced Plastic Vessels", American Society for Mechanical Engineers, Latest edition
- (3) 一般社団法人日本高圧力技術協会編:HPIS G 110 TR 2005、AE法による石油タンク底部 の腐食損傷評価手法に関する技術指針、社団 法人日本高圧力技術協会、2005年
- (4) 金子敦史、竹本幹男:液体貯蔵円筒タンクの AE 伝播挙動、非破壊検査、Vol.51、No.11、 2002年、pp.718-725

- (5) S. Murakami, K. Homma, T. Koike and M. Yamada : AE Source Location Using Neural Network on AE Evaluation of Floor Conditions in Above-Ground Tank, Journal of Solid Mechanics and Materials Engineering Vol.1, No.7, 2007, pp.919-930.
- (6) 中村英之、荒川敬弘、関根和喜、笠井尚哉、 前田守彦、鈴木裕晶:タンクAE計測におけ る液滴ノイズの識別及び除去方法の検討、圧 力技術、Vol.46、No.1、2008年、pp.26-31
- (7)中島富男、川崎拓、佐藤明良:薄肉 CFRP 圧 力容器耐圧試験における AE 音源位置標定に 関する実験的考察、日本機械学会論文集 A 編、 79 巻、797 号、2013 年、pp.115-118
- (8)一般社団法人日本非破壊検査協会編:アコー スティック・エミッション試験Ⅱ、社団法人 日本非破壊検査協会、2008年、p.8

研究開発センター 研究開発グループ 福本伸太郎 TEL. 045-791-3522 FAX. 045-791-3547

フェロー 工学博士 荒川 敬弘 TEL. 045-791-3550 FAX. 045-791-3555

検査事業部 技術部 大森 征一 TEL. 045-791-3523 FAX. 045-791-3547

研究開発センター センター長 工学博士 技術士 (建設部門) P. E. (Civil Eng.) 芝浦工業大学大学院非常勤講師 西土 隆幸 TEL. 045-791-3522 FAX. 045-791-3547

検査事業部 技術部 大森 真実 TEL. 045-791-3523 FAX. 045-791-3547