工場分野(横浜検査部)の「売りの技術」

1. 放射線透過試験のデジタル化に関する取組み

横浜検査部は IHI 横浜事業所の各工場および関 係会社の検査業務、また発電プラント・化学プラ ント・橋梁・環境関係等の検査工事を担当してい る。検査技術としては浸透探傷検査 (PT: Penetrant Testing)、磁粉探傷検査 (MT: Magnetic Particle Testing)、超音波探傷検査(UT:Ultrasonic Testing)、 放射線探傷検査(RT:Radiographic Testing)、渦流 探傷検査 (ET: Eddy Current Testing) を有してお り、あらゆる非破壊検査に対応できるようにして いる。その中でも当部は放射線検査を主力として おり、昭和40年代の初めから産業用高エネルギー X線装置や放射性同位元素等を導入し国内原子力 機器等の発電プラントに関する放射線透過試験 (RT)を実施してきた。また、外部の会社からも RT を積極的に取り込んでおり、全国から鋳造品を 含むさまざまな製品の RT を受注している。

国内デジタルラジオグラフィ (DR)の規格は2017 年9月にJISZ3110「溶接継手の放射線透過試験方 法-デジタル検出器によるX線及びγ線撮影技 術」⁽¹⁾として発行された。これにより、今後はデジ タルRT (D-RT)の普及が進み、フィルムに代わる 検出器を使用したRTが少しずつ増えてくると考 えられる。これらD-RTは、規格化される以前から 当社ではD-RT設備を導入し、社内検査および現地 配管の減肉調査等に使用していた。また、写真1、 写真2に示すように高エネルギーX線を使用し、 フィルムRT (F-RT)による原子炉圧力容器や各種 プラントのバルブ等のRT検査では材厚400mm ま での検査ノウハウを蓄積していることから、厚板 材に対してのDR 適用の検討を実施している⁽²⁾。 また、現地配管の RT においては、従来は放射性 同位元素を使うガンマ線透過写真撮影を実施して いるが、事前手続きおよび準備に時間がかかる等 の課題点があった。そこで、小型 X 線装置と DR とを組合せることで工事の省力化を図ることの検 討を実施している。以上の検討課題に対し、社内 の DR 機材を使用して従来の F-RT とコンピュー ティドラジオグラフィ (CR)(イメージングプレー ト:IP)および平板型半導体検出器(デジタルディ テクタアレイ:DDA)など、DR 適用の取組みおよ びその他 DR に関する活動等について紹介する。

写真 1 原子炉圧力容器

写真2 大型バルブの RT

— 17 —

IIC REVIEW/2018/10. No.60

1.1 高エネルギー X線による DR の適用

高エネルギー X 線による DR の適用として、高エ ネルギー X 線を使用し厚肉材に対し、従来の F-RT と同様に DR が可能かの確認検討を実施した⁽³⁾⁻⁽⁵⁾。

(1) 試験の状況

写真3は、溶接試験片t38mmにSM490A鋼板を 取り付け、78mmの試験体厚さとし9MeV 直線加速 器での撮影状況を示す。

また、材厚 78mm のタングステン球入り鋼板⁽⁶⁾ は、9MeV のエネルギーに対して比較的板厚が薄い ためコントラストを得るには厳しいため、DDA を 保護するために撮像領域の周りにある電気回路を 厚さ50mm の鉛ブロックでシールド保護を施した。

写真3 高エネルギーX線照射装置の撮影配置

(2) 像質計の配置と評価

ISO 17636-2 に基づき計算された空間分解能は、 ワイヤ対の分解能を示しており、画像処理ソフト ウェアはドイツ連邦材料研究所(BAM)の ISee! ver.1.10.2⁽⁷⁾を使用して画像の解像度を評価した。 **写真4**に各像質計(イメージクオリティインジケー タ:IQI)⁽⁸⁾⁻⁽¹⁰⁾の配置を示す。

本試験では厚い材料の試験条件でも全てフィル ムを基準として同等に比較するため IQI⁽¹¹⁾⁽¹²⁾は全 て線源側に適用して試験した。

写真4 各像質計(IQI)の配置

(3) 9MeV の撮影画像

写真5~写真7は、9MeVで高エネルギーX線 を用いたフィルム、IPおよびDDAの放射線画像を それぞれ示す。DDAの撮影過程における積算処理 は、従来のフィルム像とは異なるコントラストが 得られる。フィルムとDDAによる撮影画像は、 DW、JIS線形タイプの透過率計、ASTMの有孔形 タイプの透過率計とも比較的明瞭であったが、IP の撮影画像では散乱線による影響か画像が不均一 で少し不明瞭となる結果であった。

写真5 9MeV のフィルム画像

写真6 9MeVのIP 画像

写真7 9MeVのDDA 画像

(4) 複線形像質計(DW)による空間分解能の測 定結果

図1は、300keV、950keV および9MeVのX線エ ネルギーを用いたフィルム、DDA およびIPの空間 分解能の比較をした際の例として950keVのグラ フを示す。300keVと950keVの空間分解能はフィ ルム、IP、A社のDDA、B社のDDAの順で良好で あり同様の弧を描くようなグラフを得られた。9MeV では安定しておらず、グラフの勾配は同様とはな らなかった。最小のワイヤ対の空間分解能が明ら かに劣っていた。これは、DW⁽¹³⁾の使用については エネルギー 600keV 以上での使用は適切ではない というデータがあり、試験でも 9MeV では当然の結 果を得られたことになる。ただし、1MeV 付近⁽¹⁴⁾⁽¹⁵⁾ まではおおむね安定しており、参考にしても良い のではないかと思われる。DDA は、複数の画像を 使用する積算処理のために、フィルムや IP よりも 優れた CNR(コントラスト対ノイズ比)の画像を 生成する機能(ソフトウェア)を備えており、本 試験では画像処理を少し強めにかけている。

(5) 鋳物を模したさらなる厚肉材への DR 適用

厚肉のX線撮影検査では、DDAと2種類のIP (主に高分解能タイプ)を使用した。この試験にお けるX線撮影の対象は、高エネルギーX線の領域 で鋳造品を模擬した102mmと240mmおよび 300mmの厚いプレートを用いた。高エネルギーを 適用したDDA/IPの画像を従来のフィルムと比較 するためフィルムは高分解能タイプを使用して撮 影を試みた。

厚肉試験体の撮影画像 240mm と 300mm につい て、各撮影媒体の画像を**写真 8 ~写真 13** に示す。 また、鋳物を模した厚肉材への DR 適用について検 討した結果、以下のことがわかった。

写真8 t240mm フィルム画像

写真 9 t240mm IP 画像

写真 10 t240mmの DDA 画像

写真 11 t300mm のフィルム画像(マークミス)

写真 12 t300mmの IP 画像(マークミス)

写真 13 t300mmの DDA 画像

- 1 材厚 300mm までの試験において ASME 有孔 形 IQI は IP、DDA において規格要求を満たす ことがわかった。
- ②300mmより厚い試験片でのDDAの透過画像は、積分処理を含めると30分以上の長い照射時間が必要となることが判明した。超高精細IPを厚い試験片に初めて適用した結果、予期せずDDAよりも短時間である程度の画質が得られることがわかった。
- ③線形 IQI (線源側) は材厚が 300mm では規格 要求を満足しない。
- ④DWはフィルムとの比較を考慮して線源側に 置いていたがほぼ満足していない。今後の課 題として撮影媒体側に入れて試験をする必要 がある。表1に IQI の識別結果をまとめた。

1.2 現地配管への DR 適用

狭隘部の現地配管の RT は、従来、ガンマ線を使 用した F-RT が実施されている。近年は、小型軽量 の X 線装置が登場したこともあり、高精細デジタ ルデバイスとの組合せによる DR 適用について検 討した。ここでは、現地配管等の RT 検査に関する 基礎データを取得し、従来の品質を維持した上で 作業の省力化とコストダウンを目指した。また、業 容拡大および実工事に向けた検討を実施してい る。

(1) 検討方法

DR として DDA と IP を使用し、狭隘部の現地配 管等を撮影することを想定し特殊な小型 X 線装置 を用いて従来の検査と比較して規格上問題のない 像質を得ることができるか比較した。撮影距離は 200~250mm とした。

表1 高エネルギーX線による IQIの識別結果

フィルムによる IQI の識別:規格の識別要求値

Thickness (mm)	ISO19232-5/JIS Z 2307	JIS Z 2306 Wire Type	ASME/ASTM E1025 Hole Type
102	D6	1.25mm (W5)	2T (X60)
240	D5	2.00mm (W3)	2T (X100)
300	D4	2.00mm (W3)	2T (X120)

フィルムによる IQI の識別結果:試験の識別値

Thickness (mm)	ISO19232-5/JIS Z 2307	JIS Z 2306 Wire Type	ASME/ASTM E1025 Hole Type
102	D6	1.25mm (W5)	2T (X60)
240	D5	2.00mm (W3)	2T (X100)
300	D4	2.00mm (W3)	2T (X120)

IP による IQI の識別結果(高分解能タイプ 102mm 300mm)

Thickness (mm)	ISO19232-5/JIS Z 2307	JIS Z 2306 Wire Type	ASME/ASTM E1025 Hole Type
102	D6	1.25mm (W5)	2T (X60)
240	D5	2.00mm (W3)	2T (X100)
300	D4	2.00mm (W3)	2T (X120)

DDA による IQI の識別結果

Thickness (mm)	ISO19232-5/JIS Z 2307	JIS Z 2306 Wire Type	ASME/ASTM E1025 Hole Type
102	D6	1.25mm (W5)	2T (X60)
240	D5	2.00mm (W3)	2T (X100)
300	D4	2.00mm (W3)	2T (X120)

写真14 配管の撮影配置

(2) 撮影結果(DDA の例)

以下に DDA のみ画像を示す。

写真 15 A 社 X 線装置 0.4 秒 × 4 回積算

写真 16 B 社 X 線装置 DDA0.5 秒 × 20 回積算

写真 17 B 社 X 線装置 高精細 IP 20 秒

写真 18 B社X線装置 フィルム 25 秒

(3) 検討結果

A 社製小型 X 線装置での結果を写真 15 に示す が、パルス出力タイプで連続照射時間が 2 秒という 仕様のため、IP やフィルムでは照射回数を重ねる ことで必要な線量を照射可能となる。感度の違いに より高感度 IP で 20 秒、高精細 IP で 50 秒の露出時 間で撮影できることがわかった。しかし、照射を何 度も繰り返す手間は作業負担となり、撮影条件を探 る上でも苦労することとなった。一方、DDA は照 射中積算処理をして画像を構成するため照射時間 が短いと積算回数も制限され、さらに X 線装置と DDAの同期が難しくなる。試験では1フレーム0.4 秒で4フレームを積算したものと1フレーム1.6秒 のみとを比較してみた。像質はほぼ違いはないが照 射時間を増やした方がコントラストは比較的高く ノイズは4フレーム積算した画像の方が少ない感 じとなった。実撮影では1.6秒1フレーム撮影でも 問題ないと思われる。いずれにしても連続照射時間 が2秒というのは使いにくさを感じた。

メーカーでは将来的に 8 秒くらいまで連続照射 できるよう改良するとの話があったが、現場で使 用するにはそれでも短く、高感度の DDA で使用す るには良いが、その他のデバイス(撮影媒体)に は制約の生じる場合もあると考えられる。

一方、B社の小型X線装置での撮影結果を写真16 ~写真18に示すが、コンスタントポテンシャルの 連続照射が可能で、エネルギーは120kVと低くア ルミなどの軽合金が対象で採用するつもりはなかっ た。しかし、撮影画像は非常に良好な結果を得るこ とができた。

本装置はコンスタントポテンシャルということ で半波整流や全波整流よりも効率が高く、かつ焦点 寸法が0.5mmと小さく高鮮鋭である。また照射距離 がボイラ配管などでは特殊な狭隘環境で200mm程 度と短いことが幸いして照射線量率を稼げている。 像質は規格に基づく配置ができないにもかかわら ず、幾何学的不鮮鋭(ボケ)が少なく鮮明であった。 さらにボイラ配管で材厚の厚い8mmの配管を模擬 配管として撮影したところフィルム撮影で良好な

表 2 現地配管撮影試験の JIS 像質計識別

材 厚	JIS 規格値	識別本数	最少識別
[mm]	[mm]	[本目]	線径[mm]
3.7	0.25	4	0.20
8.0	0.40	7	0.20

結果を得ることができた。当然デジタル RT であれ ばさらに短い露出時間で撮影が可能となる。

像質計の値からも各配管に対して規格値より小 さいワイヤを識別しており十分に透過度計の識別 度を満足していることがわかった。

また、従来の¹⁹²Ir線源からこれらの小型 X 線装 置に置換えることで放射性同位元素の保管・使用 届出申請など取扱にかかわる管理コストも大幅に 削減が可能である。

1.3 今後の取組み

現在、高エネルギーX線へのD-RT適用の期待 が高まり、さまざまな試験撮影の検討依頼を受け ている。1MeV を超える際の DW の取扱はエネル ギーと線材の吸収係数や材厚の増加による線源側 配置による散乱線の影響などがあり、検出自体に 困難があると思われる。今後はディテクタ側配置 と補正計算等の工夫が必要と考える。また検出装 置システムとして認証されている装置の使用など 改善をしつつ、400mm 程度までの鋼材について試 験をしておく必要がある。さらに、散乱線除去の 物理フィルタや遮蔽の工夫など厚肉撮影に欠かせ ない技術についても調査が必要と感じている。 DDA はフィルムとは異なり、現像プロセスがない ことから利便性が非常に高い。また、小型マイク ロフォーカス X 線装置と組合せることにより、高 精細な検査が可能となると同時に、現地出張工事 への適用も可能となる。今後もさらに実証試験を 重ね、積極的に適用範囲をひろげたいと考えてい る。

1.4 委員会活動

当部では、放射線検査部門の活動も積極的に実施しており、**写真 19**に示すように、外部の関連業 界が参加する専門委員会を通じて規格原案作成委 員会等への参与や国内外への技術発表⁽¹⁴⁾および

— 23 —

写真 19 APCNDT2017 技術発表

DR講習会⁽¹⁵⁾⁽¹⁶⁾への講師派遣なども行っている。ま た、長年に渡り放射線源取扱等の安全管理委員会 への参加もしており積極的な技術力強化と品質維 持および放射線にかかわる安全管理(法令遵守等) に努めている。

文責

検查事業部 横浜検査部 次長 田北雅彦

参考文献

- (1) JIS Z 3110:2017:溶接継手の放射線透過試験
 方法 デジタル検出器による X 線及び γ 線撮
 影技術、一般財団法人日本規格協会
- (2)田北雅彦、中村敬治、佐藤雅保、細谷昌厚:高 エネルギーX線を用いた平板型半導体検出器のきず検出基本性能確認、IIC REVIEW、 No.51、2014/04、pp.31-38
- (3) Y. Narukawa : The Latest Computed Radiography. Non-destructive Test, 61 (4), 2012, pp.141–147
- (4) K. LaCivita : Use of Digital Radiography for Final Part Acceptance of Aerospace Castings, Materials Evaluations, 70 (8), pp.915–922
- (5) U. Ewert et al. : Image Quality in Digital Industrial Radiography, Materials Evaluations, 70 (8), 2012, pp.955–964

- (6) Patent No. 5126915: Method of producing welding test pieces for non-destructive tests
- (7) http://www.bam.de/en/kompetenzen/fachabteilungen/ abteilung_8/fg83/fg83_ag5.htm
- (8) BS EN 465-2 : 1996 : Non-destructive testing-Image quality of radiographs Part 5. Image quality indicators (duplex wire type), determination of image unsharpness value, BSI, 1996
- (9) JIS Z 2306:2015:放射線透過試験用透過度計、一般財団法人日本規格協会
- (10) JIS Z 2307:2017:放射線透過試験用複線型像 質計による像の不鮮鋭度の決定、一般財団法 人日本規格協会
- (11) ISO 17636-2 : 2013 : Non-destructive testing of welds-Radiographic testing- Part2 : X- and gammaray techniques with digital detectors, International Organization for Standardization, 2013
- (12) JIS Z 3104:1995:鋼溶接部継手の放射線透過 試験方法、一般財団法人日本規格協会
- (13) K. Bavendiek et al. : Best Energy Selection for Different Applications with Digital Detector Array from 20 to 600keV, Materials Evaluations, 70 (8), 2012, pp.965–974
- (14) N. Ooka, M. Takita, K. Yokota : Application of Digital Radiographic Testing Techniques to Thick Material using High-energy X-Ray, 15th APCNDT 2017, Singapore
- (15)日本工業出版株式会社:産業用高エネルギー X線による厚肉材へのデジタルRTの適用 講師:IHI検査計測田北、日工セミナー2018.3.8 放射線透過法による検査の最新事例 セミナー冊子、pp.46-50
- (16) The Japan Welding Engineering Society : Nondestructive Test Application Research Committee : Basics and Applications of Digital Radiography in Industrial Fields, 2014