AE 法を用いた CFRP 製圧力容器の健全性評価手法

川崎 拓^{*1} 大森 真実^{*2} 大森 征一^{*3} Kawasaki Hiraku Ohmori Mami Ohmori Seiichi

近年、幅広い用途で利用される炭素繊維強化プラスチック(CFRP: Carbon Fiber Reinforced Plastics)の損傷評価・強度評価に対して、著者らは Acoustic Emission (AE) 法における独自の周波数解析手法を提案している。本稿では実際の CFRP 圧力容器に対して、AE 手法および周波数解析手法の有効性を確認したので報告する。

キーワード: Acoustic Emission(AE)、重心周波数(F.C.O.G)、CFRP

1. はじめに

繊維強化プラスチック (Fiber Reinforced Plastics: FRP)は、近年機械や構造物の材料として進出がめ ざましく、航空宇宙、船舶海洋など多くの分野で 使用されている。水素貯蔵技術に着目すると、水 素自動車や水素ステーションに設置される燃料タ ンクは CFRP を用いた容器で信頼性、安全性が要 求されている。

CFRP 材料の強度評価や CFRP を用いた製品の供 用中ヘルスモニタリングでは負荷応力中に発生し た損傷を明確にすることが望まれているが、CFRP の損傷には樹脂割れ、繊維と樹脂のはく離、繊維破 断、層間はく離などがあり、非常に複雑である⁽¹⁾⁽²⁾。

当社では、複雑な破壊形態を有する CFRP 材料 に対して、微小破壊に伴い発生する音(弾性波)に 着目した AE (Acoustic Emission)法を用いた健全性 評価手法を検討しており⁽³⁾、CFRP 材引張試験に おいて取得された AE 信号における重心周波数集 中部の変化を監視する方法を提案している。本手 法では、試験体が健全であれば負荷した応力に比 例するように重心周波数集中部が高くなり、損傷 が発生した際には重心周波数集中部が低くなるこ とを確認した。加えて、AE 信号の重心周波数集 中部の低下は層間はく離が発生する直前の現象で ある可能性を得ている⁽⁴⁾。

本稿では、実際の CFRP 圧力容器を作製し、耐 圧試験における本手法の有効性を確認したので報 告する。

2. CFRP 圧力容器

表1に作製した圧力容器の仕様を示す。圧力容器は樹脂ライナに CFRP を巻き付けたタイプⅣタ

炭素繊維巻き厚	20mm
周長	938mm
外形	298mm
全長	1,102mm
炭素繊維	東レ製 T700
ライナ 材料	ポリエチレン
口金部材質	AL 6061-T6
成型方法	フィラメントワインディング

表1 圧力容器 仕様

*3:検査事業部 技術部 (株式会社 IHI 技術開発本部 生産技術センター 生産基盤技術部 検査・計測グループ出向中)

^{*1:}研究開発センター 研究開発グループ

^{*2:}検査事業部 技術部

ンクとなっており、樹脂ライナはシリンダー部、 ドーム部でそれぞれ型取りしたポリエチレンの部 品を溶着してタンク型の形状を作製している。そ れに樹脂を含浸させた炭素繊維をフィラメントワ インディング方式で巻き付け、オートクレーブに て熱硬化処理を行い成型した。

図1に示すように、試験体には、AE センサお よびひずみゲージを設置している。試験体を5つ のZONE に分け、試験体ドーム部には3個のAE センサを1周に等間隔(0°、120°、240°)で設置し た。シリンダー部にはAE センサをドーム部と同 様に3個設置した。

この時の AE センサは 150kHz に共振周波数を持 つプリアンプ内蔵型の VS150-RIC を用いた。ひずみ ゲージは軸方向および周方向に沿って 2 軸ひずみ ゲージを設置し、取り付け位置は試験体ドーム部に 2 個のひずみゲージを 45°、180°に設置した。センサ 数は AE センサ 15 個、ひずみゲージが 6 枚となる。

負荷圧力は表2に示すように、およそ20MPaご とに圧力負荷、保持、除荷を繰り返し、試験体が 破断するまで実施した。破断圧力は135MPaで あった。

表2 圧力パターン

負荷回数	負荷圧力
1	6 MPa
2	20 MPa
3	40 MPa
4	60 MPa
5	75 MPa
6	100 MPa
7	125 MPa
8	135(破断) MPa

3. タンク破断の状況とひずみ計測結果

図2にタンク破断写真を示す。図2(a)はタン クの全体図、図2(b)はエンド側破断面、図2(c) はエンド側ライナ部である。全体写真よりエンド 側ドーム部が大きく損傷していることがわかる。 ライナ溶着部を確認したところ、断面がきれいに 切り離されている。このことから、本試験体はエ ンド側ドーム部ライナ溶着部から破断したと考え られる。ライナの裂け目の位置はタンク下側(CH14、 CH15の間)から口金部に近い部分で破裂し、吹き 飛んで行ったと考えられる。

図3にひずみ計測結果を示す。図3(a)に周方

(a) タンク外観

(b) エンド側破断面(c) エンド側ライナ図 2 タンク破断写真

向に設置したセンサを、図3(b)に軸方向に設置 したセンサの結果を示す。結果は各負荷サイクル 中の最大ひずみ値を示しており、ZONE02に設置 したセンサを黒、ZONE03を赤、ZONE04を緑で 示している。

図3(a)より、周方向の最大ひずみはおよそ 8000~9500usであり、最も変形量が大きかったの はタンク中央部に位置する ZONE03(CH05)であっ た。破断箇所に近い ZONE04 においても、他点と 異なる点は確認されなかった。次に、図3(b)軸 方向の最大ひずみ量に着目すると、ZONE02 およ び ZONE03 にておよそ 2000µs であり、周方向に 比べて小さい。圧力容器は加圧されると周方向に 膨らむため、予想通りの結果が得られた。一方で 破断箇所に近い ZONE04 (CH12) では圧力 30MPa において他点に比べて高いひずみ量が計測されて いる。CH12は30MPaで断線したため、その後の 経過は確認できなかった。同じZONE04(CH09)で は、60MPaから破断に至るまで、ひずみ量が高く なっている。このことから、破断箇所近傍では試 験の早い段階から軸方向に対する負荷がかかって いたと考えられる。

4. AE 計測結果

まずはじめに、一般的な AE 解析手法であるフェ リシティ比 (FR)を用いて解析を行った。FR とは、 AE が発生した荷重を先行荷重で除した値となり、 CFRP に代表される複合材料における健全性評価手 法として普及している。FR を用いた方法は ASME 規格にも制定されており、FR が 0.95 以上で合格と している⁽⁵⁾⁽⁶⁾。

圧力負荷4~8回目(破断)において、横軸を試験 圧力、縦軸を0.1MPaごとに発生したAEの発生数 (AE Hit)に整理した結果を図4に示す。本結果は、 計測したすべてのセンサを用いている。本試験結果 では、圧力負荷6回目まではFRが1.0であったが、 圧力負荷7回目にて0.7に低下した。このことから、 圧力負荷6回目の75~100MPaにおいてASME規格 上許容できなくなる損傷が発生したと予想される。

- 39 -

次に、各 ZONE において、負荷回数とFR を整 理した結果を図5に示す。各 ZONE においても、 圧力負荷回数7回目以降でFR は ASME 合格ライ ンである 0.95 を下回った。特に、破断位置に最も 近い ZONE05 では、他 ZONE に比べて著しく低下 している。しかし、負荷回数8回目では、試験体 中央部に位置する ZONE03 においてもFR の急激 な低下が確認できるため、本結果からは耐圧試験 中に破断位置を推定することは難しい。

5. F.C.O.G 結果

次に、当社の独自手法である重心周波数 (F.C.O.G: Frequency Center Of Grabity)を用いた解 析を行った。重心周波数とは、AE 信号の周波数 解析結果におけるスペクトルの代表値である。重

図5 各 ZONE におけるフェリシティ比

心とは、加重平均を指しており、周波数 f_i におけ る成分強度 $A(f_i)$ の積和を、成分強度の総和で 割った値となる(式(1))。

$$F, C, O, G = \frac{\sum_{i} A(f_i)^* f_i}{\sum_{i} A(f_i)}$$
(1)

図6に全15CHを用いて計算した F.C.O.G 結果 を示す。横軸に試験圧力、縦軸に重心周波数、色 合いは2MPa×2kHz内に標定されるAEの発生数 を示している。F.C.O.G は破断圧力135MPaに対し て低い圧力30MPaで変化した。30~80MPaにか けて F.C.O.G は60kHzまで低下した。FR が低下し

図6 全 CH を用いた重心周波数解析結果

た 70 ~ 100MPa 近傍で F.C.O.G は 60kHz 近傍に集 中した。これは **1 章**で解説した引張試験の結果と同 じ傾向であった。一方で、破断直前の 100 ~ 135MPa において F.C.O.G は 90kHz 近傍に集中し、過去に 報告している短冊形の引張試験時の結果と異なる 傾向を示した⁽⁷⁾。

図7に各ZONEにおけるF.C.O.Gの解析結果を 示す。破断位置に最も遠いZONE01における F.C.O.Gの結果は、圧力30MPaから破断に至るま でF.C.O.Gは約90kHzに集中し、F.C.O.Gの低下は 確認されなかった。その他の位置では、ZONE05 に近くなるごとに低周波数成分が増加しているこ とが確認でき、ZONE05に設置したセンサでは低 い圧力の時からF.C.O.Gは低いままであった。損 傷のない箇所(ZONE01)から発生されるAE信号 の F.C.O.G は破断に至るまで 90kHz 近傍に集中す ることが予想される。このことから、各部位に設 置されたセンサで解析することにより損傷位置を 捉えることができると考える。

6. 最後に

本稿では、CFRP 製圧力容器における健全性評価手法に、一般的な FR とは異なる独自の周波数 解析方法を適用した。ASME 規格に制定されている FR と F.C.O.G の低下はよい一致を示した。健全性評価手法としては F.C.O.G が 60kHz まで低下すると ASME 規格に基づく合格ラインを下回ることが確認できた。

加えて、F.C.O.G は破断圧力 135MPa に対して、 圧力 30MPa から変化するため、供試体破断に対し

て20%近傍の圧力から破断までの変化を監視す ることが可能である。

一方で、短冊形の引張試験とは異なり、広範囲 を監視するため、損傷に起因した AE 信号と、健 全部から発生する AE 信号が複合されて検知され ることが確認された。今後は実機適用を踏まえ、 本手法は必要なセンサ数と各センサの監視範囲を 明確にすることで十分な有効性がある。

参考文献

- (1) F. Lissek, A. Haeger, V. Knoblauch, S. Hloch, F. Pude and M. Kaufeld : Acoustic emission for interlaminar toughness testing of CFRP: Evaluation of the crack growth due to burst analysis, Composites, part B, 2018, pp.55-62
- (2) D. Baccar and D. Soffker, Proc. : Identification and classification of failure modes in laminated composites by using a multivariate statistical analysis of wavelet coefficients, Mechanical Systems and Signal Processing, Vol.96, 2017, pp.77-87

- (3)川崎拓、滝沢真実、中島富男、中村英之、岡 崎順二、中川幸次郎:水圧疲労試験による高 圧水素用 CFRP 蓄圧器への AE 試験適用性検 討、IIC REVIEW、No.52、2014/10、pp.23-28
- (4) Hiraku Kawasaki and Mami Takizawa: Study of the Damage Evaluation method for the CFRP Material Using F.C.O.G part 2, Proc. in Acoustic Emission XV II, 2014, pp.111-116
- (5) 上野谷敏之、水谷義弘:Monitoring and Evaluation of Damages and Fractures in Composite Materials、 Journal of the Society of Materials Science, Japan、 Vol.55、No.3、2006、pp.341-347
- (6) ASME Boiler and Pressure Vessel Code, Section V, Article 11 : Acoustic Emission Examination of Fiber Reinforced Plastic Vessel, American Society for Mechanical Engineers, Latest edition
- (7) Mami Takizawa and Hiraku Kawasaki: Study of the Damage Evaluation method for the CFRP Material Using F.C.O.G part 1, Proc. in Acoustic Emission XV II, 2014, pp.105-110

研究開発センター 研究開発グループ 川崎 拓 TEL. 045-791-3522

TEL. 045-791-3522 FAX. 045-791-3547 検査事業部 技術部 (株式会社 IHI 技術開発本部 生産技術センター 生産基盤技術部 検査・計測グループ出向中)

大森 征一 TEL. 045-791-3523 FAX. 045-791-3547

検査事業部 技術部 大森 真実 TEL. 045-791-3523 FAX. 045-791-3547