溶射型ひずみゲージの現場適用 ~溶接型溶射ひずみゲージの検討~

中野 公貴^{*1} 尾﨑 淳一^{*2} Nakano Hiroki Ozaki Junichi

航空機エンジンや火力発電所など高温に襲される設備、機器ではクリープ損傷や疲労損傷などの懸念が あり、ひずみ測定の需要は高い。高温環境下でのひずみ測定では、溶接型ひずみゲージや溶射型ひずみ ゲージなど、特殊なひずみゲージが用いられる場合が多い⁽¹⁾⁽²⁾。前者は現場での施工が容易であるが、後 者は設備の整ったラボで施工する必要があり、現場での施工は難しい。本稿では、高温ひずみ測定の有望 な手法の一つとして、溶射型ひずみゲージの現場適用に向けた検討結果を紹介する。

キーワード:高温ひずみ、溶射、フリーフィラメントゲージ、ベースプレート

— 7 —

1. はじめに

航空機エンジンや火力発電所のボイラなど、 350℃を超える高温環境において、ひずみを計測 する場合、溶接型ひずみゲージや溶射型ひずみ ゲージなどが利用される。

溶接型ひずみゲージ(図1)はゲージベースやセ ンシング部、ゲージリード部に金属が使用されて おり、完全密閉された構造となっている。この ゲージベースは測定対象の金属面に対して、可搬 式の抵抗スポット溶接機を用いて取付ける。した がって、電源が取れる現場であれば、どこでも容 易に施工することができる。

一方、より可撓性が求められる用途には溶射型 ひずみゲージが用いられる。溶射型ひずみゲージ
(図2)は、フリーフィラメントゲージをセラミック溶射でコーティングしたセンシング部と金属で

図1 溶接型ひずみゲージ

図2 溶射型ひずみゲージ

*1:計測事業部 計測技術部 福浦グループ 課長

*2:株式会社 IHI 技術開発本部 基盤技術センター 材料・構造グループ

覆われたゲージリードを使用した構造である。溶 射型ひずみゲージの施工には局所排気設備や、溶 射用ガス供給設備が整った溶射ブース内で測定対 象の金属面に直接溶射施工する必要があり、通 常、現場での施工は困難である⁽¹⁾。しかし小さく 軽量かつ耐熱性、可撓性に優れているため、高温 環境における高速回転体のひずみ測定に適してお り、現場適用が強く望まれている。

本稿では、溶射型ひずみゲージの現場適用のた め、抵抗スポット溶接機で取付けが可能となる金 属製ベースプレートをゲージベースとした現場施 工タイプの「溶接型溶射ひずみゲージ」を試作し、 施工方法の検討を実施した事例を紹介する。

2. 溶接型溶射ひずみゲージの試作

一般的な溶射型ひずみゲージの断面構造を図3 に示す。溶射型ひずみゲージは通常の着ひずみ ゲージとは異なりゲージベースが無く、計測対象 の金属母材に対して直接溶射施工する。以下に溶 射施工手順を記す。

①ブラスト処理:測定対象金属表面に対し、接着性および変形追従性を良くするための粗面処理

- ②Ni · Co 系金属のボンド層溶射:溶射ひずみ
 ゲージの接着層施工
- ③酸化アルミニウム(セラミック)絶縁層溶射: フリーフィラメントゲージのベース施工
- ④フリーフィラメントゲージ:ひずみ受感部(グリッド)取付け
- ⑤酸化アルミニウム(セラミック)オーバー コート溶射:フリーフィラメントゲージの固 定とオーバーコート施工

図4に今回試作した溶接型溶射ひずみゲージの 断面構造、図5に施工平面図を示す。ベースプ レートのブラスト処理方法などに違いはあるが、 基本的にはラボ施工の溶射型ひずみゲージの手順 と変わらず、直接の溶射施工対象が計測対象の母 材ではなく金属製ベースプレートになる。使用し たベースプレートの材質は耐熱性の高いインコネ ル 600、板厚は t=0.1mm および 0.2mm の 2 種類と し、ベースプレートの外周には計測対象へ取付け るための抵抗スポット溶接用のスペースを確保し た。ゲージリードにはリード線の電気抵抗および 温度変化を除去する ¢1.0mm の4芯 MI ケーブル を使用し、温度補正用のK型熱電対も併せて溶射 施工した。図6にフリーフィラメントゲージの取

図3 一般的な溶射型ひずみゲージの断面構造

図4 溶接型溶射ひずみゲージの断面構造

図5 溶接型溶射ひずみゲージの施工平面図

図6 フリーフィラメントゲージ

付け、**図7**にセラミック溶射後、**図8**に溶接型溶 射ひずみゲージの完成品を示す。

3. 静的・繰返し載荷試験

溶接型溶射ひずみゲージについて、静的載荷お よび繰返し載荷試験を行い、ひずみ伝達特性、高 温時の出力特性を確認した。

3.1 試験体・試験方法

図9に示す試験片(材質:インコネル 600)の中央 付近に、ベースプレート(幅 8mm × 長さ 14mm、板

図7 セラミック溶射後

図8 溶接型溶射ひずみゲージ(完成品)

厚0.1mmおよび0.2mm)を有する溶接型溶射ひずみ ゲージを配置した(図10)。

この試験体を用いて、室温、300℃、650℃にお ける静的載荷および繰返し載荷試験を実施した。 **表1**に試験条件を示す。

_ 9 _

図9 試験体形状(上:ひずみゲージ貼付面、下:側面)

図10 試験体への取付け状態

(a) 室温

表1 試験条件

		静的載荷			繰返し載荷			
試験温度		室温,	300°C,	650°C	室温,	300	°C,	650°C
制御形態		荷重制御			荷重制御			
負荷速度,	波形	手動			0.002	2Hz,	サ・	イン波
繰返し数		1回(室温)または2回			110回			

3.2 試験結果

図 11 に静的載荷試験結果を示す。図の縦軸は 試験荷重から算出される応力、横軸は計測された ひずみの値であり、試験材のヤング率を用いて求 めた理論値を併記した。また、室温における試験 では比較のため、一般的なひずみゲージ(箔ゲー ジ)による計測結果も示した。

室温での試験において、箔ゲージによるひずみ 値は理論値と比べて約 10%低い値であったが、除 荷時における傾きは理論値とおおむね一致してい た。一方、溶接型溶射ひずみゲージのひずみ値は 理論値より約 25%低い値であった。このような差

(b) 300°C

図 11 静的載荷試験結果

が生じる理由として、ベースプレートを介して ゲージ部に計測対象のひずみが伝達する複雑な構 造であるため、ひずみが伝達過程で一部損失して いる可能性が挙げられる。

高温時(300℃および650℃)においては、t=0.2mm のベースプレートの応力ひずみ曲線にヒステリシ スが確認された。t=0.1mmのベースプレートの場 合は、ヒステリシスは見られないが、常温時と同 様 300℃では約 19%、650℃では約 14%、理論値 に対して低いひずみ値を示しており、高温でも ベースプレートの影響でひずみの損失が生じてい ると考えられる。

図12に繰返し載荷試験結果を示す。各温度で の lcycle 目と 100cycle 目の結果を比較すると、い

(c) 650°C

図12 繰返し載荷試験結果

ずれの温度条件に対してもドリフトが発生してい る。しかし 100cycle に到達しても得られたひずみ 範囲については安定しており、それぞれのひずみ 範囲(グラフの傾き)は繰返し回数に伴う大きな変 化は見られなかった。

4. 溶接型溶射ひずみゲージの適用性について

溶接型溶射ひずみゲージを現場における高温ひ ずみ測定に適用するためには、構造や評価におい て改善の余地がある。具体的には、MIケーブル固 定部のシム板が2重構造かつスポット溶接により 剛性が高くなっていると考えられ、またベースプ レート外周のスポット溶接とゲージグリッドの間 にMIケーブル固定部があるため、ひずみの伝達が 一部損失していると考えられる。以上のことから、 今後ひずみゲージの構造変更を試みる予定であ る。一方、ひずみが理論値より低い値となること、 高温時のドリフトについては、それらの影響を定 量的に評価し、結果を補正する方法を検討する。 一方、繰返し載荷試験においては応力変化に対 して得られるひずみ範囲(傾き)がおおむね安定し ていることから、動ひずみ測定に関しては現場適 用に対して有望である。

5. おわりに

今回試作した溶接型溶射ひずみゲージに対し、 構造や評価方法についての課題を得ることができ た。今後も高温環境下における新たな手法として 研究を行い、計測技術を向上させるとともに現場 適用を目指す。

参考文献

- 三上隆男、松田昌悟:溶射型ひずみゲージによる高温環境下の静ひずみ測定技術、IIC REVIEW、No.51、2014/04、pp.44-50
- (2) 菅原敏博:溶射ゲージによる静ひずみ測定技 術、IIC REVIEW、No.58、2017/10、pp.12-17

計測事業部 計測技術部 福浦グループ 課長 中野公貴 TEL. 045-791-3518 FAX. 045-791-3541

